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The Application of Runge-Kutta Schemes 
to Singular Initial Value Problems 

By Frank de Hoog and Richard Weiss 

Abstract. A theory for explicit Runge-Kutta schemes applied to the initial value problem for a 
first-order system of differential equations with a singularity of the first kind is developed. It 
is shown that, in general, the order of convergence is at most two but that the usual order up 
to a logarithmic term can be obtained for level three and four schemes applied to specific 
problems. 

1. Introduction. In this paper we examine the application of explicit Runge-Kutta 
schemes to the numerical solution of the problem 

(1.la) Y'-My/t= g(Sy)/t+ f(t,y), 0 < t < 1, 

(1.lb) y e C1[0, 1], 

(1.lc) y(O) = 71. 

Here y, g, f are vector valued functions, M, S are constant matrices, and TJ is a 
vector. Further restrictions will be placed on g, f, M, S and TJ in the sequel. 

Equations (1.la, b) subject to the boundary condition b(y(O), y(l)) = 0 often 
arise when symmetry is used to reduce partial differential equations to ordinary 
differential equations. The interest in (1.1) is due to the fact that shooting techniques 
for the solution of the boundary value problem require the solution of the initial 
value problem. 

When M = 0 and g = 0, explicit Runge-Kutta schemes are often used to calculate 
a numerical solution or provide starting values for multistep schemes, but the validity 
of this in the present case is questionable, since the equation has a singularity at 
t = 0. However, in a number of numerical studies the application of explicit 
Runge-Kutta schemes to equations similar to (1.1) has yielded satisfactory starting 
values or provided an effective means of computing the solution on the entire 
interval, see Keller and Wolfe [4], Parter, Stein and Stein [6], and Rentrop [7]. This 
has motivated the examination presented here. 

Although the order of convergence for the general case is shown to be poor, the 
usual order of convergence of level three and four schemes is established for a 
number of problems of practical interest. 
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2. Analytic Background. Here we make a number of assumptions and present an 
existence and smoothness result for the solution of (1.1). It is assumed that 

A2.1. The eigenvalues of M have nonpositive real parts and the only possible 
eigenvalue on the imaginary axis is zero. 

A2.2. S is a projection of RW onto the invariant subspace associated with the 
eigenvalues of M that have negative real parts. 

A2.3. T E kerM. 
A2.4. The mappings g, gy, f and fy are well defined and continuous on Dg and Df, 

respectively, where Dg is a convex open subset of RW which contains q and 

Df= [0,1] X Dg. 
A2.5. There exists a constant d such that 

g(y)I dly2 yE Dg, 

jgy(y)j < d|yi, y EDg. 

Although these assumptions appear quite restrictive, they are often satisfied in 
practice. It is also frequently possible to bring singular systems into the form (1.1) by 
suitable transformations of the dependent variables (see Section 4). 

In the sequel, R denotes the spectral projection associated with the eigenspace of 
M belonging to the zero eigenvalue, and Q = I - R. 

The following theorem can be established by a combination of the techniques 
developed in [2] and contraction mapping arguments. (Compare also Theorem 2.1 in 
de Hoog and Weiss [3].) 

THEOREM 2.1. There exists a constant T > 0 such that (1.1) has a unique solution on 
[0, T]. This solution satisfies 

(2.1) |Qy(t)| < const t. 

Furthermore, if g and f are p times continuously differentiable on Dg and Df, 
respectively, then y E CP [0, 1]. 

3. Stability and Convergence. Explicit Runge-Kutta schemes for the solution of the 
initial value problem 

y'(t) = F(t, y(t)), 0 < t < T, y(O) = 

have the form 
m 

(3.1) yj+l - yj = h E Wrkr( h, tj, yj) 
r=1 

= h4D(h, tj, yj), j=O,...,~N-1, 

where 

to0=O, ti+1= tG+h, j=O,...,N-1, 1 Yo=71 

and 

krhl,y ( y+hfr ( t r-1 
kr(h5 t, y) = F| t + arh5 y + h E lsrqk q(h t5 y) , r =1,. .. ,m. 
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In addition, we assume that 
r-1 

a, = O, ar= E2frq>O? 

(3.2) mml 
E wr =1, E Wrar =1/2. 

r-1 r=2 

It is well known that the restrictions (3.2) ensure that the convergence of (3.1) is at 
least of order two for smooth F(t, y). 

For (1.1), 

F(t, y) = (My + g(Sy))/t + f (t, y) 

and hence (3.1) is not well defined in the case when j = 0, since an evaluation of 
y'(O) = F(O, q) is required. However, 

lim g(Sy(t)) = 0 and lim My(t) 
m My'(O), 

t-O t t-0O t 

which yields 

y(O) = (I - ) 1f (O, y (O)). 

It is therefore appropriate to use 

(3.3) F(O, y):= (I-M) f(O, y). 

Let 

Hd,j = x e RVI | Q(X - y(tj))| < dtj, JR(x - y(tj))| < d}, j = 0,... ,N-1, 

where d is a positive constant. Then, for d sufficiently small, it is easily shown that 
4Z (h, t., yj) is well defined provided yj E Hd, t, and h is small enough. Hence Yj+i is 
well defined in this case and it follows from (3.1) that 

(3.4) ej+l = ej + h4(h, tj, yj) - h4(h, tj, y(tj)) + , 

where ej = yj - y(tj), and 

Tj = y(t1+1) -y(tj) - h4(h, tj, y(tj)) 

is the local truncation error. Furthermore, it is not difficult to verify that for 

yj E Hd, ty j 

h0(h, tj, yj) - h4b(h, tjG y(tj)) = {M/(j + 1) + hAj + B1/(j + 

where 

(3.5) lAjl, lBjl < const, j = O,...,~N -1. 

Substitution into (3.4) yields 

(3.6) ?j+i I + M/(j + 1) + hA j+ 

This equation is very similar to the difference equation studied in de Hoog and 
Weiss [2] for the stability of the centered Euler scheme and a straightforward 
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modification of the analysis there yields 

LEMMA 3.1. Assume that (3.5) holds. Then, the difference equation 

UJ= I + M/(j + 1) + hA1+ Bj.( +1)2 UJ 

+ha + Mb/(j+ 1) + Cj/(j + 1) + ej/(j + 1)2, j=O,...,N-1, 

uo= 0, 

has a unique solution. Furthermore, 

luil < const{logP-1(j + 1)[b + e + clog(j + 1)] + atj}, j= 1,2,...,N, 

where 

a = maxlajl, b = maxlMbjl, c = maxIcjI, e = maxlejl 

and p is the smallest positive integer such that rank{ MP } = rank{ MP + 1}. 

We now estimate the local truncation error when g and f are three times 
continuously differentiable on Dg and Df, respectively. From Theorem 2.1, it then 
follows that y e C4[0, T] for some T > 0. Using Taylor's Theorem and (3.2), we 
find that 

(3.7) Tj = h3aj + h2Mb1/(j + 1) + h2ej/(j + 1)2, j = 1 ...N-1 

where lajl, lbjl, 1ejl < const, j = O..... ,N - 1. A simple inductive argument using 
(3.6), (3.7) and Lemma 3.1 now yields 

THEOREM 3.1. The scheme (3.1) subject to (3.2) is well defined, provided h is 

sufficiently small. Furthermore, 

(3.8) Iyj-y(tj)I < const h2logp-1(j + 1), j = 1,.... ,N. 

Runge-Kutta schemes, which are convergent of order q > 2 for equations without 
a singular point at t = 0, have terms of the form aF/at, a2F/at2, etc., in the local 
truncation error. These terms yield 

T = O(h2/(j + 1)q-1) j = O, ...,N - 1, 

when (3.1) is applied to (1.1). From Lemma 3.1 it therefore follows that in general 
the order of explicit Runge-Kutta schemes when applied to (1.1) is at most two. 

However, we shall see in Section 4 that the usual order of convergence for level 
three (m = 3) and level four (m = 4) schemes may be obtained in particular 
problems. First we shall need sharper estimates of the local truncation error and 
these are given below. 

Level Three Schemes (m = 3). In addition to (3.2), we assume that 

w2a 2 + w3a2 = 1/3, w3a2/332 = 1/6. 
These conditions lead to a two-parameter family of level three schemes that are 
convergent of order three when there is no singularity at t = 0. (See, for example, 
Ralston [8, p. 199].) Using Taylor's Theorem, the local truncation error can be 
calculated to be 

h 
= 

h4a2(3a3- 2 + 
M)MY"(tJ) + O(h3/(j + 1)), j = O,... ,N - 1. 

Ti 12(tj + a h)(tj + a h) 
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Level Four Schemes (m = 4). In addition to (3.2) we assume that 
2 12 2 = w2a2 + w3a3 + w4a4 = 1/3, 
3 3 3 w2a2 + w3a3 + w4a4 = 1/4, 

w3 2a 32 + w4( a 2/42 + a 3843) = 1/6, 

w3a2f32 + w4(a2 f42 + a3 #43) = 1/12, 

w3a2a3132 + w4(a2f42 + a3f43)a4 = 1/8, 
w4a2132143 = 1/24. 

Under suitable restrictions on a2, a3 (see Ralston [8, Problem 44, p. 225]) these 
conditions lead to a two-parameter family of level four schemes which are conver- 
gent of order four when there is no singular point at t = 0. Note that one of the 
restrictions is a3 0 1. A rather tedious but straightforward computation then yields 

h5a2(M + 2(2a3 - 1))(M + 1)My"( tj) 
Ti - 48(tj + a2h)(tj + a3h)(tj + h) 

h5(4a2a3 + a2 -2a3)(M + j)Mtjy(3)(tj) 
+ 

144(tj + a2h)(tj + a3h)(tj + h) 

h6a2(a2M + 2a3- 3a2)(M + j)My(3)(tj) 

144(tj + a2h)(tj + a3h)(tj + h) 

h5a2(M + 1)MG(tj)y"(tj) 

48(tj + a3h)(tj + h) 

h5a2G(tj)(M + 2(2a3 -l))MY"(tj) 

48(tj + a2h)(tj + a3h) 

h 5a2 MG ( t1) mVy( t1 ) 4( 

48(tj + a3h)(tj + h) 

where 

G(t) = gy(Sy(t))S/t + fy(t, y(t)). 

From A2.5 and Theorem 2.1, the matrix G(t) is a smooth function of t. 

4. Applications of Runge-Kutta Schemes. 
Example 1. Consider the problem 

Au =f(u) 
in a cylindrical or spherical domain. If we assume rotational symmetry, this leads to 
the boundary value problem, 

(4.1) u" + Xu'/t =f(u), u'(0) = 0, u(1) = 

where X = 1 or 2, respectively. From symmetry, u is an even function and Eq. (4.1) 
can be reduced to the form (1.1) in a number of ways. (u is said to be even if all odd 
derivatives vanish at zero.) 

(a) Lety1 = u,y2 = u' andy = (yl, y2)Y. Then we obtain (1.1) with 

(4.2) M- [ 0-], g= , f(t, Y) = (Y2,f(Y))T. 
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The relevant initial value when a shooting method is used is 

q = (m,1") . 

Clearly, (M + X)M = 0, and since u is even, 

My "(t) = (0, -Xu(3)(t)) 
T = 0(t). 

Hence, for m = 3: 

Tj = O(h3/(j + 1)). 

Whence 

(4.3) j-y(tjj) < const h3log(j + 1), 

and form = 4, X = 1: 

Tj = O(h4/(j + 1)), 

and so 

(4.4) jyj - y(ttj) < const h4 log(j + 1). 

Form = 4, X = 2: 

h5(3a2M + 8a2a3 - 7a2 + 2a3)Mtjy(3)(tj) 

T= 144(tj + a2h)(tj + a3h)(tj + h) 

h6a2(a2M + 2a3 - 3a2)My(3)(tj) 
144(tj + a2h)(tj + a3h)(tj + h) 

+ -ha2MG (tj)y",.(t?) +Oh4( 
48(tj + a3h)(tj + h) (h/(j )) 

= O(h /(j + 1)2). 

In this case we cannot choose a2 and a3 to further increase the order of the 
truncation error. The numerical solution will therefore satisfy 

yj -y(tt)I < const h3. 

(b) Lety1 = u,y2 = tu' andy = (yi, y2)T. Then we obtain (1.1) with 

(4.5) [0 1 -J] g = 0 f(t, y) = (0, tf(yj)jT. 
Clearly, y is even and 

G(t)=O(t), M(M + X-1) = 0. 

Hence, for m = 3: 

- = h4a2(3a2 - 1 - X)MY"(J) + O(h3/(j + 1)), 
Ti 

12(tj + a h)(tj + a h) 

and, in general, we have 

(4.6) 1yj - y(tj)I < const h2. 
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However, by choosing a3 = (1 + X)/3, the first term in the truncation error is zero 
and in this case we find that 

(4.7) -yj-y(tj)I < const h3(log(j + 1))3 . 

Form = 4,X = 1: 

h5a2(2a3 - 
1)MY"-(tj) 0h41j+)) 

- 
24(tj + a2h)(tj + a3h)(tj + h) (h/(j )) 

and so 

(4.8) |yj - y(t )t < const h2. 

However, if we take a3 = 1/2, then the leading term in the truncation error is zero 
and therefore 

(4.9) j-y(ty)t < const h4(log(j + 1))2. 

Form = 4, X = 2: 

T; = O(h4/(j + 1)) 

and hence 

yj -y(ttj) < const h4log(j + 1). 

Example 2. Keller and Wolfe [4] consider the system 

yu(t) = p[u(t)v(t) + Pt2], ?v(t) = p[t2 - u2(t)] 

subject to 

u(O) = v(O) = 0; u(1) = 1, v'(1) = vv(1), 

where ' is the differential operator 

.Z =td( - (t.) 

and p, P, v are constants. This problem arises in the study of the buckling 
mechanism of the cap portion of a spherical shell. From symmetry, u and v are odd 
functions. 

(a) Let 

l d 
yM(t) = u(t), y2(t) = - - (tu(0) tdt 

l d 
y3(t) = v(t), y4(t) = - d (tv(t) t dt 

Y= (Yl, Y2, Y3 Y4) 
T 

Then we obtain (1.1) with 

-1 0 0 0 

g ) = a0 0 -1 0 , 

g(Sy) = (0, PY1Y3, 0 -P1) an f(,y= Y pty,p) 
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Furthermore, it can easily be verified that My is odd, MG(t)M = 0 and M(M + 1) 
= 0. Hence 

For m = 3: 

Tj = 0(h3/(j + 1)). 

The global discretization error is therefore 0(h3 log(j + 1)). 

For m = 4: 

Tj = O(h4/(j + 1)). 

Thus, the global discretization error is O(h4 log(j + 1)). 

(b) Let 

yM(t) = u(t)/t, y2(t) = u'(t) 

y3(t) = v(t)/t, y4(t) = v'(t) 

Y= (Y1' Y 3 Y4)T 

Then we obtain (1.1) with 

-1 1 0 0 

(4.10) M=| 

O 0 1 -1 

(4.11) g(Sy) = 0, 
and 

f(t, y) = (0, tp(y1y3 + P), 0, tp(1 - 

Appropriate initial conditions are y(0) = (q, 71, 71 3 q13)T and it is easy to verify that 
y is an even function. Furthermore, G(t) = O(t) and M(M + 2) = 0. 

Hence, for m = 3: 

h4a2(4 - 3a3)MY".(tj) Oh31j+). T 
12(t? + a2h)(tj + a3h) (h/(i )) 

The global discretization error is therefore O(h2) unless a3 = 4/3 in which case it is 
O(h3 log(j + 1)). 

For m = 4: 

-h5a2(1 - a3)My;"(tj) + 0(h4/(j + 1)) 
T' 12(tj + a h)(tj + a h)(tj + h)+O( /(+1) 

and hence, the global discretization error is O(h2). Note that it is not possible to 
take a3 = 1 since, in this case, there does not exist a level four scheme which is 
convergent of order four when there is no singularity at t = 0. The form of the local 
discretization error does, however, suggest the following change of variables: 

(c) 

yi(t) = u(t)/t -Yt2, y2(t) = u'(t) - 3yt2, 

y3(t) = v(t)/t - at2, y4(t) = v'(t) - 3at2, 

Y= (Yl, Y2, Y3 Y4) 
T 
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where 

Y = P[T13 + P]/8, a = p[I -_2/8, 

and 

711 =Yl(o) = Y2(0), n13 =Y3(0) = Y4(0)' 

This leads to an equation of the form (1.1) where M and g are given by (4.10) and 
(4.11), respectively, and 

f(t, y) = (O, -8yt + tp[(yi + yt2)(y3 + at2) + P], 

0, -8at + tp[1 -(Y1 + yt 2)]T) 

It is not difficult to verify that y"(t) = 0(t2) and, hence, that for level three and 
four schemes the global discretization error decreases like (h3log(j + 1)) and 
(h4 log( j + 1)), respectively. 

A similar analysis can be applied to other problems of practical interest such as 
the shell equations derived in Bauer, Reiss and Keller [1] and the Ginzburg-Landau 
equations discussed in Meissner and Tholfsen [5]. 

5. Numerical Results. In this section we illustrate the theory developed in the 
previous sections by some numerical examples. Specifically, we consider the schemes 
defined by the parameters 

/21 = 1/2, /31 = ?l 32= 3/4, 
(5.1) a1 = 0, a2 = 1/2, a3 = 3/4, 

wi = 2/9, w2 = 1/3, w3 = 4/9. 

121 = 1/3, 131 = 0, 132 = 2/3, 
(5.2) a1 = 0, a2 = 1/3, a3 = 2/3, 

w1 = 1/4, w2 =, w3 = 3/4. 

/21 = 1/2, 131 = 0, 132 = 1/2, 
141 = 1 42 = 0, 143 =1, 

(5.3) a1 = 0, a2 =1/2, a3 = 1/2, 

a4 =1, w, = 1/6, w2= 1/3, 
W3= 1/3, w4= 1/6. 

121 = 1/3, 131 = -1/3, 132 = 1, 

141 = 1 342 = -- 143 = 1 

(5.4) a1 = 0, a2 = 1/3, a3 = 2/3, 
a4 = L, w = 1/8, w2= 3/8, 

W3= 3/8, w4= 1/8. 

Clearly, (5.1) and (5.2) are level three schemes while (5.3) and (5.4) are level four 
schemes. The parameters have been chosen so that the level three schemes are 
convergent of order three, and the level four schemes are convergent of order four in 
the absence of a singular point. 

In Table 5.1, we have tabulated the maximum error when schemes (5.1)-(5.4) are 
applied to problem (4.2) with X = 1, f(u) = U3 - 3u5 and n = 1. The solution is 
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yl(t) = (1 + t2)-1/2, y2(t) = -t(1 + t2)-3/2. The error estimate (4.3) for schemes 
(5.1), (5.2) and the estimate (4.4) for schemes (5.3), (5.4) are borne out by this 
example. Thus, for this problem, we have the usual order of convergence up to 
logarithmic terms. 

TABLE 5.1. 

Maximum errors for problem (4.2) 

h scheme scheme scheme scheme 
(5.1) (5.2) (5.3) (5.4) 

1/4 .791 . 10-2 .856 *10-2 .106 10-2 .104 10-2 

1/8 .982 *10-3 .100* 10-2 .840 10-4 .894 10-4 

1/16 .122 *10-3 .123 *10-3 .576 *10-5 .687 *10-5 
1/32 .153 10-4 .153 10-4 .372 * 10-6 .505 * 10-6 

1/64 .191 *10-5 .191 *10-5 .236 *10-7 .362 *10-7 

We now present some results which demonstrate that the usual order of conver- 
gence is not necessarily achieved for equations with a singular point. From any fixed 
point t onwards, the numerical schemes will, of course, retain their usual order of 
convergence. However, due to the potential reduction of accuracy in the numerical 
solution on [0, t], the numerical initial values at t have errors of the orders discussed 
in the preceding section. These errors dominate the errors accumulated in the 
remaining computation and we have therefore chosen to present the numerical 
results by tabulating the error in a fixed component at the point t = 1/4. 

Table 5.2 tabulates the error in the second component of the solution at t = 1/4 
when the schemes are applied to problem (4.5) with X, 7, and f as previously. The 
solution is now y1(t) = (1 + t2)-1/2, y2(t) = -t2(1 + t2)-3/2. For scheme (5.1) the 
estimate (4.6) is appropriate but scheme (5.2) has a3 = 2/3 and hence the bound 
given by (4.7) is appropriate. Similarly, scheme (5.4) satisfies (4.8) but scheme (5.3) 
has a3 = 1/2 and thus the error satisfies (4.9). Again the numerical results show 
agreement with the theory and demonstrate that schemes applied to problems with a 
singular point do not necessarily yield the usual order of convergence. 

TABLE 5.2 

Y2,N/4 - Y2(1/4) for problem (4.5) 

h scheme scheme scheme scheme 
(5.1) (5.2) (5.3) (5.4) 

1/4 -.543 * 10-2 -.543 * 10-2 .135 * 10-2 -.344 10-3 

1/8 -.724 10-3 -.465 10-3 .147 10-3 -.139* 10-3 

1/16 -.125 10-3 -.406 10-4 .112 10-4 -.490 10-4 

1/32 -.261 10-4 -.382* 10-5 .772 10-6 -.135 10-4 

1/64 -.605 10-5 -.391 . 10-6 .498 10-7 -.346 10-5 
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6. Concluding Remarks. Although, in general, the order of convergence of explicit 
Runge-Kutta schemes applied to equations of the form (1.1) is at most two, 
higher-order convergence can be obtained for particular problems. However, each 
problem requires individual analysis and it may be necessary to transform the 
problem to a more appropriate form before applying a scheme. In addition, the 
scheme used shopld depend on the problem being solved. 

Finally, it should be noted that the theory developed can easily be extended to 
quasi-uniform grids. 
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